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Introduction

Introduction

Overview

This lecture covers covariate engineering. This makes up a major
part of regression modeling in actuarial problems. Firstly, categorical
covariates need to be brought into a numerical form. Usually, this is
done by an embedding. Secondly, continuous variables may need to be
suitably transformed, or they can be embedded as well. This will be
discussed in this lecture.

This lecture covers Chapter 4 of Wüthrich et al. (2025).
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Categorical covariates

Categorical covariates

Categorical covariates (nominal or ordinal) need pre-processing to bring
them into a numerical form. This is done by entity embedding.

Consider a categorical covariate X taking values in a finite set
A = {a1, . . . , aK } having K different levels.

The running example in this lecture has K = 6 levels:

A =
{

accountant, actuary, economist,

quant, statistician, underwriter
}

.

We need to bring this into a numerical form for regression modeling.
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Categorical covariates

Ordinal categorical covariates

For ordinal (ordered) levels (ak)K
k=1, use a 1-dimensional entity embedding

X ∈ A 7→
∑K

k=1
k 1{X=ak} ∈ R.

Our running example has an alphabetical ordering.

level embedding

accountant 1
actuary 2
economist 3
quant 4
statistician 5
underwriter 6

One may argue that the alphabetical order is risk insensitive (not useful).4/24



Categorical covariates

One-hot encoding

One-hot encoding maps each level ak to a basis vector in RK

X ∈ A 7→
(
1{X=a1}, . . . , 1{X=aK }

)⊤
∈ RK .

level

accountant 1 0 0 0 0 0
actuary 0 1 0 0 0 0
economist 0 0 1 0 0 0
quant 0 0 0 1 0 0
statistician 0 0 0 0 1 0
underwriter 0 0 0 0 0 1

One-hot encoding does not lead to full rank encodings because there is a
redundancy (the first K − 1 components are sufficient).5/24



Categorical covariates

Dummy coding

Dummy coding selects a reference level, e.g., a2 = actuary. Based on this
selection, all other levels are measured relative to this reference level

X ∈ A 7→
(
1{X=a1}, 1{X=a3}, 1{x=a4}, . . . , 1{X=aK }

)⊤
∈ RK−1.

level

accountant 1 0 0 0 0
actuary 0 0 0 0 0
economist 0 1 0 0 0
quant 0 0 1 0 0
statistician 0 0 0 1 0
underwriter 0 0 0 0 1

This leads to full rank, but also to sparsity on large datasets, i.e., most of
the entries are zero (for K large). This may be problematic numerically.6/24



Categorical covariates

Entity embedding

Borrowing ideas from natural language processing (NLP), use low
dimensional entity embeddings, with proximity related to similarity; see
Brébisson et al. (2015), Guo and Berkhahn (2016), Richman (2021).

Choose an embedding dimension b ∈ N, this is a hyper-parameter
selected by the modeler, typically b ≪ K .

An entity embedding (EE) is defined by

eEE : A → Rb, X 7→ eEE(X ).

In total this entity embedding involves b · K embedding weights.

Embedding weights need to be determined either by the modeler
(manually) or during the model fitting procedure (algorithmically), and
proximity in embedding should reflect similarity in (risk) behavior.
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Categorical covariates

Manually chosen example with b · K = 24 embedding weights.

level finance maths stats liability

accountant 0.5 0 0 0
actuary 0.5 0.3 0.5 0.5
economist 0.5 0.2 0.5 0
quant 0.7 0.3 0.3 0
statistician 0 0.5 0.8 0
underwriter 0 0.1 0.1 0.8

Note: the weights do not need to be normalized, i.e., only proximity in
Rb is relevant.

In neural networks, this can be achieved by setting up a so-called
embedding layer. The embedding weights can be learned with
stochastic gradient descent.
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Categorical covariates
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Categorical covariates

Target encoding

Especially for regression trees, one uses target encoding.

Assume a given sample (Yi , Xi , vi)n
i=1 with categorical covariates

Xi ∈ A, real-valued responses Yi and weights vi > 0.

Compute the weighted sample means on all levels ak ∈ A by

yk =
∑n

i=1 viYi 1{Xi =ak}∑n
i=1 vi1{Xi =ak}

.

These weighted sample means (yk)K
k=1 are used like ordinal levels

X ∈ A 7→
∑K

k=1
yk 1{X=ak}.

Though convincing initially, this does not consider interactions between
covariates, potentially giving misleading results for scarce levels.
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Categorical covariates

Credibilitized target embedding

For scarce levels, one should credibilitize target encoding; see
Micci-Barreca (2001) and Bühlmann (1967).

Problem: Assess how credible the individual estimates yk are.

Improve unreliable ones by mixing them with the global weighted
empirical mean y = ∑n

i=1 viYi/
∑n

i=1 vi , providing

y cred
k = αk yk + (1 − αk) y ,

with credibility weights for 1 ≤ k ≤ K

αk =
∑n

i=1 vi1{Xi =ak}∑n
i=1 vi1{Xi =ak} + τ

∈ (0, 1].

Shrinkage parameter τ ≥ 0 needs to be selected by the modeler.
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Continuous covariates

Continuous covariates

In theory, continuous covariates do not need any pre-processing.

In practice, it might be that continuous covariates do not provide the
right functional form, or they may live on the wrong scale.

E.g., we may replace a positive covariate X > 0 by a 4-dimensional
pre-processed covariate

X 7→ (X , log(X ), exp{X}, (X − 10)2)⊤.

In GLMs, one often discretizes continuous covariates by binning. For a
finite partition (Ik)K

k=1 of the support of the continuous covariate X ,
assign categorical labels ak ∈ A to X by setting

X 7→
∑K

k=1
ak 1{X∈Ik}.
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Continuous covariates

Standardization and MinMaxScaler

Gradient descent fitting methods require that all covariate components
live on the same scale.

Assume to have n instances with a continuous covariate (Xi)n
i=1.

Standardization considers the transformation

X 7→ X − m̂
ŝ ,

with empirical mean m̂ and empirical standard deviation ŝ > 0 of the
sample (Xi)n

i=1.

The MinMaxScaler is given by the transformation

X 7→ 2 X − min1≤i≤n Xi
max1≤i≤n Xi − min1≤i≤n Xi

− 1.
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Continuous covariates

Continuous covariate embedding

In recent deep learning architectures, multi-dimensional entity
embedding has been beneficial for continuous covariates X ∈ R, too.

This allows one to bring continuous covariates to the same
b-dimensional embedding space as the entity embedded categorical
covariates.

Select a deep FNN z(d :1) : R → Rb giving the entity embedding

X 7→ z(d :1)(X ) ∈ Rb.
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Continuous covariates

We apply this entity embedding to a covariate vector

X = (X1, . . . , Xqc , Xqc+1, . . . , Xq)⊤,

with qc categorical covariates and q − qc continuous covariates.

Applying entity embedding to both the continuous covariates and the
categorical covariates with the same embedding dimension b, gives us
an input tensor[

eEE
1 (X1), . . . , eEE

qc (Xqc ), z(d :1)
qc+1(Xqc+1), . . . , z(d :1)

q (Xq)
]

∈ Rb×q.

The input data X is now in a tensor structure, suitable to enter
attention layers and the Transformer archicecture of Vaswani et al.
(2017); see also Richman, Scognamiglio and Wüthrich (2025).
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Example: French MTPL data

Example: French MTPL data

FNN.embed <- function(seed, qq, kk, bb){
k_clear_session()
set.seed(seed)
set_random_seed(seed)
Design <- layer_input(shape = c(qq[1]), dtype = 'float32')
Volume <- layer_input(shape = c(1), dtype = 'float32')
#
# define the entity embeddings (levels are encoded by integers)
BrandEmb = Design[,qq[1]-1] %>%
layer_embedding(input_dim = kk[1], output_dim = bb[1], input_length

= 1) %>% layer_flatten()↪→

#
RegionEmb = Design[,qq[1]] %>%
layer_embedding(input_dim = kk[2], output_dim = bb[2], input_length

= 1) %>% layer_flatten()↪→
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Example: French MTPL data

#
# concatenate entity embeddings and remaining covariates for the FNN
Network = list(Design[,1:(qq[1]-2)], BrandEmb, RegionEmb) %>%
layer_concatenate() %>%
layer_dense(units=qq[2], activation='tanh') %>%
layer_dense(units=qq[3], activation='tanh') %>%
layer_dense(units=qq[4], activation='tanh') %>%
layer_dense(units=1, activation='exponential')

#
Response = list(Network, Volume) %>% layer_multiply()
#
keras_model(inputs = c(Design, Volume), outputs = c(Response))
}

Levels are encoded by integers, and after embedding into Rb, they are
concatenated with the (standardized) continuous covariates before entering
the feature extractor.
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Example: French MTPL data

...
________________________________________________________________________________
Layer (type) Output Shape Param Connected to

================================================================================
embedding (Embedding) (None, 2) 22 ['tf.__operators__.getit
embedding_1 (Embeddin (None, 2) 44 ['tf.__operators__.getit

'flatten_1[0][0]']
dense_3 (Dense) (None, 20) 240 ['concatenate[0][0]']
dense_2 (Dense) (None, 15) 315 ['dense_3[0][0]']
dense_1 (Dense) (None, 10) 160 ['dense_2[0][0]']
dense (Dense) (None, 1) 11 ['dense_1[0][0]']

'input_2[0][0]']
================================================================================
Total params: 792 (3.09 KB)
Trainable params: 792 (3.09 KB)
Non-trainable params: 0 (0.00 Byte)
...
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Example: French MTPL data

Results

model in-sample loss out-of-sample loss balance (in %)

Poisson null model 47.722 47.967 7.36
Poisson GLM 45.585 45.435 7.36
Poisson FNN 44.846 44.925 7.17
nagging predictor 44.849 44.874 7.36
embedding FNN 45.030 44.948 7.16
embed nagging predictor 44.636 44.864 7.36

For the nagging predictor we use M = 10 individual network fits.

We receive slightly better results using entity embedding over one-hot
encoding. This is a general observation.

In the case of high-cardinality categorical features, one should also
regularize, see Richman and Wüthrich (2024).
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Example: French MTPL data

Illustration of 2D embeddings
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Copyright

© The Authors

This notebook and these slides are part of the project “AI Tools for
Actuaries”. The lecture notes can be downloaded from:

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5162304

This material is provided to reusers to distribute, remix, adapt, and
build upon the material in any medium or format for noncommercial
purposes only, and only so long as attribution and credit is given to the
original authors and source, and if you indicate if changes were made.
This aligns with the Creative Commons Attribution 4.0 International
License CC BY-NC.
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